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Density expansion for particle-particle correlations in time-dependent physical clusters
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We present a theory for the particle-particle correlations in physical clusters for which bonding between
particles is determined by a connectivity distance and a permanency time. A generalized Mayer density
expansion for the cluster pair correlation function is found, as well as an Ornstein-Zernike like relation. We can
rely on this formalism to study clustering in realistic models by applying techniques of liquid state theory.

PACS numbds): 05.20-y, 61.20.Gy

The relevance of physical clusters in condensed matteing via pairwise additive potentials throughout and will de-
physics, particularly in relation with transition phenomena,note withv(r,,r;) the pair potentidlinto bonded (1) and
has been recognized since more than sixty years ago whetibonded(*) terms: e(ry,rp)=€'(ry,rp) +e*(ry,ry). As
Bijl, Band, and Frenke[1] (among othersintroduced the Usualg =1/kgT with T the absolute temperature akgl the
concept of physicalor rea) clusters, in place of the math- Boltzmann constant. Since'(r,,r,) represents the basic

ematical ones that Mayer had considered in the virial expanProbability density that two particles at positiongandr,
sion of imperfect gasel@] respectively, are directly connectdabnded, this separation

o _ . . allows us to get a diagrammatic expansion for the partition
The application of statistical mechanics formalism to de g J b b

. . o . s _~functions in terms of physical rather than mathematical
scribe clustering in equilibrium classical systems is ma'nly(Mayer’s) clusters.

due to Hill [3]. In Hill theory the concept of cluster is di-  Fygacity and density expansions similar to those obtained
rectly related to that of connectivity: two particles belong to by Mayer and Montrol[6] for the ordinary pair correlation
the same cluster if they are connected trough a path of difunctiong(r,,r,) have been found by Coniglio and collabo-
rectly connected particles. Therefore, a crucial point in theators for the pair connectedness functgh{r,,r,), which
identification of the physical clusters is the definition of di- is proportional to the joint probability density of finding two
rectly connected particle@ bonded pajr Whereas thermo- particles at positions; andr, and belonging to the same
dynamic properties are not affected whatever the particulagluster{4]. Moreover, by collecting nodal and non-nodal dia-
definition used to identify the clusters is, clustering and pergrams in these expansions, they also obtained an Ornstein-
colation properties are very sensitive to this choice instea&fm'ke like relation from which integral equations for
3]. g'(ry,rp) can be pose@?]: ' .
To our knowledge all previous works on clustering theory In this Rapid Communication we show how to generalize

used connectivity criteria which are based on just “presenégrevm!tﬁgg'r?g% foggsvlgé?] mar(:ir((:jlgg fg ggtglym'}néo d %uséeéin_
time” configurations in phase spa¢8,4]. More elaborated 9 P y

criteria must include some information on the “previous” nectivity distanced and a permanency time. We give
" , ) . P fugacity and density expansions for the pair connectedness
(or “subsequent’] configurations. For example, two par-

) . functiong®(r;,r,,p;,p,), which is proportional to the joint
ticles could be close enough as to form a bond, but if theif robabili?y(d%anszitfllopf)zlzinding Wo ppa?ticles at positiojln§
relative velocity is quite large then the_y can move far awa andr, with momentap, andp, and belonging to the same
one from the other in a very short time. In this case Wec|yster, An Ornstein-Zernike-like integral equation for
cannqt say thaF a true pond was.for_med in a physical Sensgi(r, r,,p;,p,) is presented together with an approximation
even if the particles satisfy the criterion for direct connectiv-qf the Percus-Yevick type. Here we just present the main
ity at a given “instant.” results; the details will be given elsewhdgj.

~In the past few years, several papers have renewed the For a system oN classical particles interacting via a pair
interest on energetic and dynamic aspects of bonding, pagotentialv(r;,r;) we define a density correlation function
ticularly in relation with the properties of watef5]. p(r1,r5,p1,p») which isN(N—1) times the probability den-

Hydrogen-bond lifetimes have been calculated and new COrkity of finding two particles at phase space points, ;)
nectivity criteria have been proposed for water moleculesgng (,,p,), respectively:

These works suggest that a bonded pair must be defined as
two water molecules that are in some appropriate geometri- N(N—-1)

cal arrangement at least during a time interval of the order of ~ P(F1,72,P1,P2)= WNNTOWY T)
the estimated hydrogen-bond life times. NV, T)

Hill theory separates Boltzmann factoe(r,r,) N 51N N
=exd —Buv(ri,r,)] [we will consider only systems interact- XJ H exr{—ﬂp—i} H
=1 2m|i=y =

*Electronic address: vericat@iflysib.unlp.edu ar Xexd — Bo(r;,ry)]drN"2dpN=2. (1)
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Here h is the Planck constant an@y(V,T) the canonical wherer; ;(t) is the relative position of particlesandj at
partition function of the system. Then, in the same spirit oftimet. We see that, in fact, EqR) is satisfied by Eqg4) and
Hill and Coniglio et al, we separate exp Buv(r;,r;)] into  (5). Explicitly, time is introduced here by taking the set

connecting and blocking parts {rN,p} as initial conditions irt=0 and solving the equation
of motion of the particles under their mutual interaction. By
exd — Bv fi,F')]=ff(fi,Fj,pi,pj)+f*(ri,fj,pi,pj)+1- considering as effective |nte.ract.|on the .pa|re[f)fotent|al of
2 mean force between particles and j: (ri,ry)

) —In[g(r;,r;)]/B, we obtain a two body problem and
Here f'(r;,r;,p;,p;) represent the basic probability denS|ty ri(t) will depend onr;, rj, p; andp; only.

that two particles at configuratiom;(r;,p;,p;), are directly Equat|on(4) states that two particleisand| are directly
connected. The shorthand notatib¥(r;,r;.pi.p))=f{; (¥  connected if they are separated a distance shorterctoan-
=T,%) will be sometimes used. ing a time interval longer than. Of course, more elaborated
Substitution of Eq(2) in Eq. (1) yields criteria (e.g., involving angular restrictionsas well as sim-
pler ones(that consider, for example, configurations at just
N(N—1) the extremes of the given time interyatan be posefb,8].
P(r1,72,P1,P2) = Sy = XA — Bu(ra,ra)] Each term in the integrand of E(3) can be represented
h="NIQn(V,T) as a diagram consisting of two whitg- and e,-points, N
—2 black e;-points and somefJr and f'; connections
H ext{ }Z {H (" ] except between the white pomts Here we take
=exd— ,8(p,2/2m)]. White points are not integrated over,

whereas black points are integrated over their positions and

xdrN=2dpN-2, (3y  momenta. All the machinery normally used to handle stan-
dard diagrams in classical liquid thed§] can be now ex-

where the sum is camed out over all possible arranges ofended to treat these new kind of diagrams. We first reduce
products of funct|onsf andf the disconnected diagrams in E() into connected dia-

It should be noted that the funcnorﬁé and f; j can de-  grams by integrating over those black points which are dis-
pend on momenta as well as on the posmons of the tw@onnected from any white point. So we get a fugacity expan-
particles, but the sum cffT] andf’; must be momenta inde- sion forp(ry,r,,p;,pz). Then, by eliminating diagrams with
pendent in order that Eq2) be satisfied. Except by this last articulation points(i.e., black points such that upon their re-
condition, the functlonsz,j and f{'; are otherwise arbitrary moval the diagram separates into two or more pieces of
for thermodynamic purposes. Obviously, we choose them inwvhich at least one contains no white pointge transform
such a way that the desired definition of directly connectedtopological reduction{10]) the fugacity expansion into a
or bonded particles is achieved: density expansion for the functiog(r,,r,,p;,p,) defined

by p(r1,r2,P1,P2) =9(r1,r2,P1,P2)p(r1,pP1)p(r2,p2) with

o B exd —Bu(ri,r)] |ri;(H[<dVtsr
(11 Pispy) = 0 otherwise,
(@) L
p(ri,p1)= N— 1f p(ry,ra,p1,p2)drodp;.
f*(riury.pip;)
-1 |r|’J(t)|<dvt$T
a exd —Bu(ri,ry)]—1 otherwise, © The final result is

The sum of all distinct connected diagrams consisting
of two white 1-points labeled 1 and 2 respectively,

g(ry,ra,p1,P2) = (6)

black p(rq,p1)-points andfiTJ- and fi’f]--bonds, an

which are free of articulations points

We now separatg(ry,r,,ps.p,) in the formg(ry,ry,p1,p2)=9"(ry, rz P1,P2) + 9% (r1,r2.P1,P2), Whereg'(ry,r,p1,py)
is the sum of all the diagrams g(r,,r,,p1,p,) that contain a path df connections linking the white particles 1 and 2 and
g*(r1,r2,p1,p2) — 1 denotes the sum of the remaining diagrams. Then
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( The sum of all distinct connected diagrams consisting

of two white 1-points labeled 1 and 2 respectively,
g'(ry,rp,p1,po) =4 black p(ry,ps1)-points andfiT’j and fifj-bonds, and . (7)
which are free of articulations points and white

points are linked by a path cbfj—bonds

Figure 1 shows the first graphs in the diagrammatic exc'(r,,r,,p;,p,). We take the Percus-Yevick-like
pansion(6). Graphs which are enclosed by a box belong toapproximation g(ry,r,,p;.p2)exdBu(ry,r,)]1=1+N(ry,
the expansiol7) and the remaining ones to the expansion ofr,,p;,p,), where the functioiN(r,r,,p;,p,) is the sum of
g*(r1,r2,P1,P2)- the nodal diagrams in the expansion given by . Sepa-

From the interpretation of all the operations carried outration into connecting and blocking parts yields
over the diagrams, we see tha(ry,p;)p(r2.p,)g'(ry,
r2,P1.Pz) is N(N—1) times the joint probability density of ~ g'(r1.r2,p1,p2)=[h*(r1,r2.p1,p2)+ 110" (r1,r2.p1.P2)
finding two particles at positions, andr, with momentap,

and p,, respectively, and belonging to the same cluster, —c(r,12,p1,p2)]
where the bonding criterion is given by Edd4) and (5). +exd Bu(r,r»)]19(r1,r,p1,P2)
An Ornstein-Zernike like integral equation for
g'(ry,r5,p1,p,) can be written if we separate nodal and XF(ry,r2,p1,P2). (10

non-nodal diagrams in Eq7). We find . ) , ,
Equation(8) closed by Eq(10) gives an integral equation for

T(ry,r,,p1,P2)=ci(ry,r,,p1,P2) 9'(r1.r2,p1.p2).
9tz PPz wl2:PuPz From the functiong™(r,,r,,p;,p,) we define the cluster

air correlation function
+Jp(r3’p3)CT(r1:r3vp11p3) P

Xg'(r,r2,p3,pz)drsdps, (8) gT(rl,rZ)zf p(r1,01)p(r2,p2)9"(r1,12,p1,p2)dp1dp, .

where the functiorc’(ry,r,,p;,p,) denotes the sum of all |t is the joint probability density of finding two particles that

the non-nodal diagrams in Eq7). We remember that a belong to the same cluster at positionsandr,, respec-
nodal diagram contain at least a black point through whichively.

all paths between the two white points p&sse the last three

graphs in Fig. 1 For homogeneous systems we have 0.20
1.0
t T p R
9'(r1,r2,P1,P2) =C'(r1,r2,p1,P2) +—————> ‘
(2mmkgT) +
5 d (X) o8t 10.15
X f expg — ,8& ctry,r )
om 1:73:P1,P3
N 0.6F
Xg'(rs,rz,ps,p2)drsdps, 9 W"%’; 40.10
with p=N/V the particles number density. 0l R
To get an integral equation from E¢B) is necessary a
closure relation between g'(ry,r»,p;,p,) and 10.05
. 0.2F
1+0—6+|6-3 +y Z+§ 3+
» 3 0.0 T . i 0
S A éA@z * éLoz * 00 05 10 15 20 25 30
N x/d
/N2 + 1_/‘ \2 + LN\ +| L N2 +
o—>o - O -- o--b FIG. 2. Cluster pair correlation functiog’(x) vs x for p*
; ” =0.2 as calculated from the present the@ylid lineg and from
é/\é +5’XZ, My % T molecular dynamics simulatiogsymbols. Triangles are forr*

=0 (standard connectivity criterign circles, squares, and dia-
FIG. 1. Diagrammatic expansion fo(r,,r,,p;,p,). Fulland  monds are forr*=0.1, 0.5, and 1, respectively. Dashed litfier
dotted lines represent unbonded and bonded particles respectivelyt =0) is calculated from the exact expression of Héfl]. Note
Boxed diagrams belong to the expansiorgdr,,r,,p1.p,). the scale change aifd=1.
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1.0 To quickly check the previous formalism, we have nu-
merically solved the Percus-Yevick-like integral equation

0.8 [Egs. (9) and (10)] for the simplest imaginable system and
s Pa/a compared the results with those obtained from molecular dy-

namics simulations. We consider a one-dimensional ideal

067 gas [v(r;,r;)=0; v®"(r;,r})=0] in which two particles
1 are considered directly connected if they are separated a dis-
0.4 tance smaller thad in a time interval longer than.

Figure 2 showsg'(x) [the one-dimensional version of
g'(r1,r,)] as calculated fop* = pd=0.2 and several values
of 7*=rJBm/d. We compare the theoretical results with
molecular dynamics simulations of the same system and for
00— ) | j J the same clusters definition. Fef =0 (standard connectiv-
0.0 05 1.0 ity criterion) we have also compared the numerical approxi-
T mate result of this work with the analytical exact one of Ref.

FIG. 3. Inverse of the mean cluster size as calculated from thgll]' In Fig. 3 & comparison is made of the mean value of

Y ) . »
present theory(lines) and from molecular dynamics simulation cluster's size as a function of fo.r sevgral densities as
(symbol3. Squaresp* =0.2; circles,p* =0.5; trianglesp* =1.0.  calculated from Eq(11) and from simulations. As we can

0.2

Crosses are from the exact theqRef. [11]). see, mean cluster size is temperature-dependent even in this
ideal case in contrast with the standard connectivity criterion.
Moreover, the mean cluster si&ds calculated as Although we have applied our generalized Orstein-

Zernike relation with Percus-Yevick-like closure to a very
1 1 simple case, the present formalism can be also considered to
(N—1)f g'(ry,rz)drydry, 1D account for the clustering in realistic systefi@ and ap-
proximations other than Percus-Yevick's can be used as
so that a percolation critical densipy. can be obtained from well. So, a theoretical tool to study clustering in systems for
the equation lip_., S(p)=<. The meaning op is clear:  which dynamical aspects of bonding are very important is
the minimum density at which a macroscopic cluster isavailable.
formed. Many interesting phenomena, which are character-
ized by qualitative changes in the macroscopic behavior of Support of this work by UNLP, CONICETGrant No.
the involved systems, can be explained in terms of a percd?IP96 469D and FONCYT(Grant No. PICT 03-04517of

S=1+

lation transition at a critical density. Argentina is very much appreciated.
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