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Density expansion for particle-particle correlations in time-dependent physical clusters
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We present a theory for the particle-particle correlations in physical clusters for which bonding between
particles is determined by a connectivity distance and a permanency time. A generalized Mayer density
expansion for the cluster pair correlation function is found, as well as an Ornstein-Zernike like relation. We can
rely on this formalism to study clustering in realistic models by applying techniques of liquid state theory.
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The relevance of physical clusters in condensed ma
physics, particularly in relation with transition phenomen
has been recognized since more than sixty years ago w
Bijl, Band, and Frenkel@1# ~among others! introduced the
concept of physical~or real! clusters, in place of the math
ematical ones that Mayer had considered in the virial exp
sion of imperfect gases@2#.

The application of statistical mechanics formalism to d
scribe clustering in equilibrium classical systems is mai
due to Hill @3#. In Hill theory the concept of cluster is di
rectly related to that of connectivity: two particles belong
the same cluster if they are connected trough a path of
rectly connected particles. Therefore, a crucial point in
identification of the physical clusters is the definition of d
rectly connected particles~a bonded pair!. Whereas thermo-
dynamic properties are not affected whatever the partic
definition used to identify the clusters is, clustering and p
colation properties are very sensitive to this choice inst
@3#.

To our knowledge all previous works on clustering theo
used connectivity criteria which are based on just ‘‘pres
time’’ configurations in phase space@3,4#. More elaborated
criteria must include some information on the ‘‘previous
~or ‘‘subsequent’’! configurations. For example, two pa
ticles could be close enough as to form a bond, but if th
relative velocity is quite large then they can move far aw
one from the other in a very short time. In this case
cannot say that a true bond was formed in a physical se
even if the particles satisfy the criterion for direct connect
ity at a given ‘‘instant.’’

In the past few years, several papers have renewed
interest on energetic and dynamic aspects of bonding,
ticularly in relation with the properties of water@5#.
Hydrogen-bond lifetimes have been calculated and new c
nectivity criteria have been proposed for water molecu
These works suggest that a bonded pair must be define
two water molecules that are in some appropriate geom
cal arrangement at least during a time interval of the orde
the estimated hydrogen-bond life times.

Hill theory separates Boltzmann factore(r1 ,r2)
5exp@2bv(r1 ,r2)# @we will consider only systems interac
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ing via pairwise additive potentials throughout and will d
note with v(r1 ,r2) the pair potential# into bonded (†) and
unbonded~* ! terms: e(r1 ,r2)5e†(r1 ,r2)1e* (r1 ,r2). As
usualb 51/kBT with T the absolute temperature andkB the
Boltzmann constant. Sincee†(r1 ,r2) represents the basi
probability density that two particles at positionsr1and r2,
respectively, are directly connected~bonded!, this separation
allows us to get a diagrammatic expansion for the partit
functions in terms of physical rather than mathemati
~Mayer’s! clusters.

Fugacity and density expansions similar to those obtai
by Mayer and Montroll@6# for the ordinary pair correlation
functiong(r1 ,r2) have been found by Coniglio and collabo
rators for the pair connectedness functiong†(r1 ,r2), which
is proportional to the joint probability density of finding tw
particles at positionsr1 and r2 and belonging to the sam
cluster@4#. Moreover, by collecting nodal and non-nodal di
grams in these expansions, they also obtained an Orns
Zernike like relation from which integral equations fo
g†(r1 ,r2) can be posed@7#.

In this Rapid Communication we show how to general
the Hill-Coniglio formalism in order to apply it to cluster
for which bonding between particles is determined by a c
nectivity distanced and a permanency timet. We give
fugacity and density expansions for the pair connectedn
function g†(r1 ,r2 ,p1 ,p2), which is proportional to the joint
probability density of finding two particles at positionsr1
and r2 with momentap1 andp2 and belonging to the sam
cluster. An Ornstein-Zernike-like integral equation f
g†(r1 ,r2 ,p1 ,p2) is presented together with an approximati
of the Percus-Yevick type. Here we just present the m
results; the details will be given elsewhere@8#.

For a system ofN classical particles interacting via a pa
potential v(r i ,r j ) we define a density correlation functio
r(r1 ,r2 ,p1 ,p2) which isN(N21) times the probability den-
sity of finding two particles at phase space points (r1 ,p1)
and (r2 ,p2), respectively:

r~r1 ,r2 ,p1 ,p2!5
N~N21!

h3NN!QN~V,T!

3E )
i 51

N

expF2b
pi

2

2mG)
i 51

N

)
j . i

N

3exp@2bv~r i ,r j !#drN22dpN22. ~1!
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Here h is the Planck constant andQN(V,T) the canonical
partition function of the system. Then, in the same spirit
Hill and Coniglio et al., we separate exp@2bv(r i ,r j )# into
connecting and blocking parts

exp@2bv~r i ,r j !#5 f †~r i ,r j ,pi ,pj !1 f * ~r i ,r j ,pi ,pj !11.
~2!

Here f †(r i ,r j ,pi ,pj ) represent the basic probability densi
that two particles at configuration (r i ,r j ,pi ,pj ), are directly
connected. The shorthand notationf g(r i ,r j ,pi ,pj )[ f i , j

g (g
5†,* ) will be sometimes used.

Substitution of Eq.~2! in Eq. ~1! yields

r~r1 ,r2 ,p1 ,p2!5
N~N21!

h3NN!QN~V,T!
exp@2bv~r1 ,r2!#

3E )
i 51

N

expF2b
pi

2

2mG( H) f i , j
† f k,l* J

3drN22dpN22, ~3!

where the sum is carried out over all possible arranges
products of functionsf i , j

† and f k,l* .
It should be noted that the functionsf i , j

† and f i , j* can de-
pend on momenta as well as on the positions of the
particles, but the sum off i , j

† and f i , j* must be momenta inde
pendent in order that Eq.~2! be satisfied. Except by this las
condition, the functionsf i , j

† and f i , j* are otherwise arbitrary
for thermodynamic purposes. Obviously, we choose them
such a way that the desired definition of directly connec
or bonded particles is achieved:

f †~r i ,r j ,pi ,pj !5H exp@2bv~r i ,r j !# ur i , j~ t !u,d ;t<t

0 otherwise,
~4!

f * ~r i ,r j ,pi ,pj !

5H 21 ur i , j~ t !u,d ;t<t

exp@2bv~r i ,r j !#21 otherwise,
~5!
f

of

o

in
d

where r i , j (t) is the relative position of particlesi and j at
time t. We see that, in fact, Eq.~2! is satisfied by Eqs.~4! and
~5!. Explicitly, time is introduced here by taking the s
$rN,pN% as initial conditions int50 and solving the equation
of motion of the particles under their mutual interaction. B
considering as effective interaction the pair potential
mean force between particlesi and j: ve f f(r i ,r j )
52 ln@g(r i ,r j )#/b, we obtain a two body problem an
r i , j (t) will depend onr i , r j , pi andpj only.

Equation~4! states that two particlesi and j are directly
connected if they are separated a distance shorter thand dur-
ing a time interval longer thant. Of course, more elaborate
criteria ~e.g., involving angular restrictions!, as well as sim-
pler ones~that consider, for example, configurations at ju
the extremes of the given time interval!, can be posed@5,8#.

Each term in the integrand of Eq.~3! can be represente
as a diagram consisting of two whitee1- and e2-points, N
22 black ei-points and somef i , j

† and f i , j* connections
except between the white points. Here we takeei

[exp@2b(pi
2/2m)#. White points are not integrated ove

whereas black points are integrated over their positions
momenta. All the machinery normally used to handle st
dard diagrams in classical liquid theory@9# can be now ex-
tended to treat these new kind of diagrams. We first red
the disconnected diagrams in Eq.~3! into connected dia-
grams by integrating over those black points which are d
connected from any white point. So we get a fugacity exp
sion forr(r1 ,r2 ,p1 ,p2). Then, by eliminating diagrams with
articulation points~i.e., black points such that upon their re
moval the diagram separates into two or more pieces
which at least one contains no white points! we transform
~topological reduction@10#! the fugacity expansion into a
density expansion for the functiong(r1 ,r2 ,p1 ,p2) defined
by r(r1 ,r2 ,p1 ,p2)5g(r1 ,r2 ,p1 ,p2)r(r1 ,p1)r(r2 ,p2) with

r~r1 ,p1!5
1

N21E r~r1 ,r2 ,p1 ,p2!dr2dp2 .

The final result is
nd
g~r1 ,r2 ,p1 ,p2!5115
The sum of all distinct connected diagrams consisting

of two white 1-points labeled 1 and 2 respectively,

black r~r1 ,p1!-points and f i , j
† and f i , j* -bonds, and

which are free of articulations points
6 . ~6!

We now separateg(r1 ,r2 ,p1 ,p2) in the formg(r1 ,r2 ,p1 ,p2)5g†(r1 ,r2 ,p1 ,p2)1g* (r1 ,r2 ,p1 ,p2), whereg†(r1 ,r2 ,p1 ,p2)
is the sum of all the diagrams ing(r1 ,r2 ,p1 ,p2) that contain a path off i , j

† connections linking the white particles 1 and 2 a
g* (r1 ,r2 ,p1 ,p2)21 denotes the sum of the remaining diagrams. Then
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g†~r1 ,r2 ,p1 ,p2!55
The sum of all distinct connected diagrams consisting

of two white 1-points labeled 1 and 2 respectively,

black r~r1 ,p1!-points and f i , j
† and f i , j* -bonds, and

which are free of articulations points and white

points are linked by a path off i , j
† -bonds

6 . ~7!
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Figure 1 shows the first graphs in the diagrammatic
pansion~6!. Graphs which are enclosed by a box belong
the expansion~7! and the remaining ones to the expansion
g* (r1 ,r2 ,p1 ,p2).

From the interpretation of all the operations carried o
over the diagrams, we see thatr(r1 ,p1)r(r2 ,p2)g†(r1 ,
r2 ,p1 ,p2) is N(N21) times the joint probability density o
finding two particles at positionsr1 andr2 with momentap1
and p2, respectively, and belonging to the same clus
where the bonding criterion is given by Eqs.~4! and ~5!.

An Ornstein-Zernike like integral equation fo
g†(r1 ,r2 ,p1 ,p2) can be written if we separate nodal an
non-nodal diagrams in Eq.~7!. We find

g†~r1 ,r2 ,p1 ,p2!5c†~r1 ,r2 ,p1 ,p2!

1E r~r3 ,p3!c†~r1 ,r3 ,p1 ,p3!

3g†~r3 ,r2 ,p3 ,p2!dr3dp3 , ~8!

where the functionc†(r1 ,r2 ,p1 ,p2) denotes the sum of al
the non-nodal diagrams in Eq.~7!. We remember that a
nodal diagram contain at least a black point through wh
all paths between the two white points pass~see the last three
graphs in Fig. 1!. For homogeneous systems we have

g†~r1 ,r2 ,p1 ,p2!5c†~r1 ,r2 ,p1 ,p2!1
r

~2pmkBT!3/2

3E expF2b
p3

2

2mGc†~r1 ,r3 ,p1 ,p3!

3g†~r3 ,r2 ,p3 ,p2!dr3dp3 , ~9!

with r5N/V the particles number density.
To get an integral equation from Eq.~8! is necessary a

closure relation between g†(r1 ,r2 ,p1 ,p2) and

FIG. 1. Diagrammatic expansion forg(r1 ,r2 ,p1 ,p2). Full and
dotted lines represent unbonded and bonded particles respect
Boxed diagrams belong to the expansion ofg†(r1 ,r2 ,p1 ,p2).
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c†(r1 ,r2 ,p1 ,p2). We take the Percus-Yevick-like
approximation g(r1 ,r2 ,p1 ,p2)exp@bv(r1 ,r2)#511N(r1 ,
r2 ,p1 ,p2), where the functionN(r1 ,r2 ,p1 ,p2) is the sum of
the nodal diagrams in the expansion given by Eq.~6!. Sepa-
ration into connecting and blocking parts yields

g†~r1 ,r2 ,p1 ,p2!5@h* ~r1 ,r2 ,p1 ,p2!11#@g†~r1 ,r2 ,p1 ,p2!

2c†~r1 ,r2 ,p1 ,p2!#

1exp@bv~r1 ,r2!#g~r1 ,r2 ,p1 ,p2!

3 f †~r1 ,r2 ,p1 ,p2!. ~10!

Equation~8! closed by Eq.~10! gives an integral equation fo
g†(r1 ,r2 ,p1 ,p2).

From the functiong†(r1 ,r2 ,p1 ,p2) we define the cluster
pair correlation function

g†~r1 ,r2!5E r~r1 ,p1!r~r2 ,p2!g†~r1 ,r2 ,p1 ,p2!dp1dp2 .

It is the joint probability density of finding two particles tha
belong to the same cluster at positionsr1 and r2, respec-
tively.

ly.

FIG. 2. Cluster pair correlation functiong†(x) vs x for r*
50.2 as calculated from the present theory~solid lines! and from
molecular dynamics simulation~symbols!. Triangles are fort*
50 ~standard connectivity criterion!; circles, squares, and dia
monds are fort* 50.1, 0.5, and 1, respectively. Dashed line~for
t* 50) is calculated from the exact expression of Ref.@11#. Note
the scale change atx/d51.
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Moreover, the mean cluster sizeS is calculated as

S511
1

~N21!
E g†~r1 ,r2!dr1dr2 , ~11!

so that a percolation critical densityrc can be obtained from
the equation limr→rc

S(r)5`. The meaning ofrc is clear:
the minimum density at which a macroscopic cluster
formed. Many interesting phenomena, which are charac
ized by qualitative changes in the macroscopic behavio
the involved systems, can be explained in terms of a pe
lation transition at a critical density.

FIG. 3. Inverse of the mean cluster size as calculated from
present theory~lines! and from molecular dynamics simulatio
~symbols!. Squares,r* 50.2; circles,r* 50.5; triangles,r* 51.0.
Crosses are from the exact theory~Ref. @11#!.
-

s
r-
f

o-

To quickly check the previous formalism, we have n
merically solved the Percus-Yevick-like integral equati
@Eqs. ~9! and ~10!# for the simplest imaginable system an
compared the results with those obtained from molecular
namics simulations. We consider a one-dimensional id
gas @v(r i ,r j )[0; ve f f(r i ,r j )50# in which two particles
are considered directly connected if they are separated a
tance smaller thand in a time interval longer thant.

Figure 2 showsg†(x) @the one-dimensional version o
g†(r1 ,r2)] as calculated forr* [rd50.2 and several value
of t* [tAbm/d. We compare the theoretical results wi
molecular dynamics simulations of the same system and
the same clusters definition. Fort* 50 ~standard connectiv-
ity criterion! we have also compared the numerical appro
mate result of this work with the analytical exact one of R
@11#. In Fig. 3 a comparison is made of the mean value
cluster’s size as a function oft* for several densities a
calculated from Eq.~11! and from simulations. As we can
see, mean cluster size is temperature-dependent even in
ideal case in contrast with the standard connectivity criteri

Although we have applied our generalized Orste
Zernike relation with Percus-Yevick-like closure to a ve
simple case, the present formalism can be also considere
account for the clustering in realistic systems@8# and ap-
proximations other than Percus-Yevick’s can be used
well. So, a theoretical tool to study clustering in systems
which dynamical aspects of bonding are very important
available.

Support of this work by UNLP, CONICET~Grant No.
PIP96 4690! and FONCYT~Grant No. PICT 03-04517! of
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